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I Abstract .

This paper analyzes the performance of a novel heuristic to
obtain the minimal-length tour of N given points In the plane:
they are sequenced as they appear along a spacefilling curve.
The algorithm consists essentially of sorting, so It is easily
coded and requires only O(N) memory and 0(N log N) operations.
Its performance is shown to be competitive with that of other
available methods.-.
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1. Introduction. The travelling salesman problem (TSP) is

to construct a circuit of minimum total length that visits each

of N given points. Even in the plane, this problem is NP-

complete [101. Thus, instances of practical interest cannot be

solved exactly in reasonable time. Accordingly, attention

* has focussed on fast algorithms that generate good but not

, .- necessarily optimal tours.

The authors have recently introduced a practical approach of

appealing simplicity to this problem [1-31. It is exceptionally

well suited to manual execution (routes may be generated by

nontechnical personnel without a computer and even, after an

initial setup, without a map [2]), and consequently, it has been

adopted by a variety of commercial, charitable and public

organizations to generate daily delivery routes. It is based on

a spacefilling curve 4i, a continuous mapping from the unit

interval C = [0,1] onto the unit square S [0,1J, and

* is performed as follows:

SPACEFILLING HEURISTIC.

I ) For each point peS to be visited, compute a 8OC such

that p = 0().

2) Sort the points by their corresponding B's.

rIn other words, this heuristic visits points in sequence of their

appearance along the spacefilling curve.

Our work was inspired by Karp [8], who introduced a family of

O(N log N) algorithms to construct tours of length arbritrarily

close to optimal. (The effort grows rapidly as optimality is

approached, however!) Karp's algorithms divide S into rectan-

gles sufficiently small so that each contains a given number, say

t, of points. A routing problem is solved exactly within each

rectangle, and the subtours are patched together. Our heuristic

may be viewed as a limiting case of Karp's algorithms- the

. -square is subdivided into subsquares that each contain but one

• point, and the patching procedure for joining subrectangles is

predetermined and specified by the spacefilling curve.
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The spacefilling heuristic is of special interest because it is

based on spacefilling curves. Originally devised as topological
counterexamples nearly a century ago, these were long regarded
as "mathematical monstrosities". It is only recently that their
usefulness has been recognized [111. Our work represents the
first application of spacefilling curves to combinatorial
optimization.

The spacefilling heuristic is appealing due to its ease of
execution. But it is necessary to show that it also performs
well, and moreover, is competitive with other methods. Standard
combinatorial arguments are inappropriate because they rely on
the combinatorial structure of the problem and spacefilling
curves, by their very nature, eliminate this structure. Our
analysis utilizes properties of measure -preserving transfor-
mations, metric spaces, and convexity.

This paper establishes worst-case bounds on the heuristic tour
length (Theorem 3) and the ratio of heuristic to optimal tour
lengths (Theorem 4), and almost sure bounds (for increasingly
large random point sets) on the heuristic tour length (Theorem
5.3) and the length of the longest link along the heuristic tour
(Theorem 5.1). To streamline the presentation, we provide the
analysis for a specific curve in the plane; following [31, our
methods can be generalized to the TSP in d-space, and to more
general combinatorial problems, such as matching and clustering.

Table I summarizes our performance analysis of the spacefilling
heuristic. Also included are the performances of comparable
methods cited by Bentley [5 as particularly simple. These are:

Nearest Neighbor (NN). Start at an arbitrary point and
successively visit the nearest unvisited point. After all points
have been visited, return to the start.

F Minimum Spanning Tree (MST). Construct the minimum span-

ning tree of the point set and duplicate all the links of the
tree. Sequence the points as they would appear in a traversal of
the doubled tree. Pass through the sequence and remove all repre-
sentations after the first of each point.

S tr ip. Partition the square into 4N_ vertical
strips. Visit the points in each strip in order (alternately top-
to-bottom and bottom-to-top) and visit the strips from left to
right. Return to the starting point.

We know of no rigorous statistical study of the expected tour
lengths for the comparison heuristics, but our informal tests
indicate practically identical behavior among these algorithms
for large problems consisting of uniformly distributed points in
the square.

2

-o..

-,°.4



b

NN MST Strip Spacefilling

Memory 0N) 0N) 0(N) 0()

Worst-case effort

To solve O(N) 0(42) ON9 log N) ON log N)
To modify Re-solve Re-solve' 0(log N) O(log N)

Worst-case 
ratio

Bound OClog N) 2 0(N) O(log N)
ofr log N

Known 0lloog N) 2 0N) 4.7

Longest tour 2.15 -FN 3.04 4Ni 2 -'N + -2 2 XN

Performance on
nonuniform data Good Good Poor Good

Ease of coding Good Poor Good Good

.

Table 1. Comparison of simple TSP heuristics. To make

- - as clean a comparison as possible, we have considered only the

most straightforward implementat ions and have omitted enhance-

ments such as sophisticated data structures or subroutines

. designed to mitigate pathological behavior. However, eff icient

sorting procedures have been assumed where appropriate. An

asterisk indicates that the entry may be reduced, but only at

considerable programming expense.

3I
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Across a spectrum of criteria, the spacefilling heuristic is
comparable to or better than other commonly considered heuristics
for the TSP. Unlike these heuristics, however, the spacefilling
heuristic may be modified in the spirit of Karp to produce tours
arbitrarily close to optimal, as follows'

ARBITRARILY CLOSE SPACEFILLING HEURISTIC.

I) Perform the spacefilling heuristic, and let P1 . PN
represent the points sequenced according to the heuristic tour.

2) For i-I. t.l. 2tl. ..... determine the shortest path
starting at p1 . passing through p1 1 ..... plt- 2 in
any sequence, and ending at pi.t-1 : adjust the heuristic
tour accordingly. S

This algorithm requires 0(N log N + N 2 t) effort. The analy-
tical techniques in this paper and in [41 and [81 can be applied
to show that it produces tours approaching optimal length as N>>t
and t-.oo.

Halton and Terada 171 have devised a partitioning heuristic
for which they make impressive performance claims. The arbitrar-
ily close spacefilling heuristic can match this performance by
solving a sequence of N-point problems, N-I,2,..., with t a
function of N such as t = log log log log N. The sort may be
performed in asymptotically linear time (e.g., by BINSORT). The 0
tours are asymptotically optimal, yet the effort is almost
linear, that is, O(N log log log N) a.s. Of course, the benefits . -
of asymptotic optimality will not become evident until N >

222 _ 10,o4.
Fundamental properties of the particular spacefilling curve

used in this study are given in Section 2. Various performance
bounds are derived in the next three sections.

2. Fundamental properties of the spacefill lng curve.
The particular spacefilling curve upon which we base our analysis
is the limit of the sequence of curves shown in Figure 1. The 8
required in step L of the spacefilling heuristic is evaluated
according to the function THETA, given in Appendix A.

Figure 1. Successive approximations to the space/filling curve b.
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We first consider the computational effort required to perform

the spacefilling heuristic when THETA is used to implement step

1. If the arguments X and Y of THETA are integer multiples of

2 -k (that is, if they are given to k binary digits), then S

THETA will call itself k times. Therefore evaluating THETA (step

.-.* I of the heuristic) requires an effort that depends on k but not.. .

N; it consists of bit sampling and shifting, and may be arranged

to require 0(k) bit operations. Furthermore, the value returned

by THETA will be an integer multiple of 2- 2k -2 (that is, it

will be given to 2k+2 digits). So each comparison of e values

in the sort (step 2 of the heuristic) requires an effort 0(k)

that does not depend on N. Consequently we have:

PROPOSITION 2.1. The spacefilling heuristic requires

O(N log N) effort.

REMARK. If a sorting procedure such as BINSORT [9,13] is used,

then the heuristic may be performed in linear expected time.
p

PROPOSITION 2.2. The spacefilling heuristic requires O(N)

memory.

Since the heuristic tour is simply a sorted list, every subse-

quence of the heuristic tour is itself a heuristic tour. Thus, if

the set of points to be visited changes slightly, the current

solution need be modified only locally to produce a new heuristic 3

tour. This observation has important practical consequences in

applications where routes must be updated frequently [2]. It is

formally stated as follows:
I

PROPOSITION 2.3. Inserting a point into or deleting a point .-

from an N-point heuristic tour requires OClog Y) effort.

.
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Next we establish three fundamental properties of the curve
which will be required in subsequent sections. The first two are
evident from Figure 1.

LEMMA 2.4. For any integers k>O and Osi< 2 k,
the set

((C) I i 2 0 (i +1) 2 -k"

is an isosceles right triangle whose right angle lies at

*((1-0. 5 )2 -k).

LEMMA 2.5. The mapping 0 is measure preserving. That

is, for any interval I in C,

area(, (I)) - length(I}.

Lemma 2.5 is important throughout Section 5, where we consider
random points uniformly distributed on S. These points are
unlikely to have finite binary representations, and an infinite-
precision version of THETA must be imagined to generate the O's
to which they correspond. Since 4 is measure preserving, these S
e's will be uniformly distributed on C and almost surely unique-
ly determined (since the set of points to which many O's corres-
pond has measure zero).

The final property of * to be considered here expresses the
notion that a spacefilling curve preserves nearness: points close
together in C map (via 0) onto points close together in S. We
take the measure of "nearness" on the square S to be Euclidean
distance, denoted by Df-,-]. As is evident in Figure 1, we
can view C as a circuit since 4)(O) - '1). thus the natural
metric on C is

A[e,e'] - min{Ie-e'l, 1-Ie-e'l}.

The following lemma is implicit in [11, p. 65] although no proof
is given.

LEMMA 2.6. For any e,''eC,

D'[00'(), P(8')] _ 4 A[9, 0'].

PROOF. Assume without loss of generality that 0 < W'-0 < 0.5.

Let 81e,.max(6, min(e', i 2-' and

o k  - 2 [ Ix) , .).

6
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First suppose Cl: 9' a i 2 - k and 9 i (i-1) 2 -k . Then by Lemma 2.4,

e1Lk and elk both lie within an isosceles right

triangle whose right angle lies at 61.k - i 0.5) 2 -k. 0

By l.emma 2.5, the area ot this trirtegle i - "  Since any

. distance within a right triangle cannot exceed the length of the

hypotenuse,
* S

D2[0(() , i(01 !k)] 4 • 2 -k .  (2.1)

But if C1 does not hold, then e i 018+16 , which

also implies (2.1). So (2.1) holds for all i,k.

Assume further C2. a ik 8. The Pythagorean

Theorem (cosine law) yields

D2 O ) IkOll)] *" ,k] ik, 0 ,0

" I

I €D2[tgg 21k), P(ehl 2 [1(kd, D2l(01i ) I--

- D2 [tOs(9 2 1i, 1 ), Oge 2 1 + +l)] * D2[O(i'21+IJh+k ), (1+2.k+,)1. (2.2)

*But if C2 does not hold, then 8=e 2 1 k, 1 =e 2 1 ,kA+ or 6'= 6 211.k+= 21 2.k+I,

which also implies (2.2). So (2.2) holds for all i,k.

Clearly, Q0 - D210(O), (9"1. By (2.2) and the

definition of 0 k,

Q - Ql Qk (2.3)

" And by (2.1) and the definition of k'

" Qk : (f2 ke.1- 2 keJ) 4 - k 1 4 (e-e) 8 2 - k.  (2.4)

The limit as k-co of (2.3)-(2.4) yields the asserted inequality. M

7
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3. Worst-case heuristic tour length. We now show that the
spacefilling heuristic cannot produce a very long tour.

THEOREM 3. The heuristic tour length cannot exceed 24Y-.

PROOF: Let 8 1'... N be the sorted list generated by the
spacefilling heuristic, and set A, e -8, l=l.....N-l and AN=t+I-0N.
By Lemma 2.6,

N
Heuristic tour length S _ 2 A . (3.1) S

=I

N
But A 1 O and At - 1. So the bound (3.1), a symmetric concave

1=1

function of (A,), achieves its maximum at A,=I/N. U

4. Worst-case ratio of heuristic to optimal tour lengths.
Although Theorem 3 guarantees that the heuristic tour cannot be
very long, the optimal tour could be considerably shorter. The
worst-case instance we have found produces a heuristic tour that
is 4.707 times longer than optimal, and we conjecture that the
heuristic tour length will never exceed the optimal tour length
by more than a constant factor. But the strongest result we have
proved is the following.

Heuristic tour length •
THEOREM 4. Optimal tour length = l A').

PROOF. Let IT be the set of N points (in S) to be visited. If
) ..... XN denote the N link lengths along the heuristic
tour, and Ht) - w(k I hk>t) (where W(-) denotes cardinality), 5
then the heuristic tour length L may be written

L - 1 - l ,>t) dt- J H(t) dt, (4.1)

where 1() denotes the indicator function. To establish the
claim, we will derive upper bounds on H(t).

The principal bound is derived from "Minkowski's sausage" li1].
denoted by T(e), and defined to be the set of points (in the
plane) that lie within e of at least one point in the locus of
the optimal tour (the union of points along the N segments that 0
form the tour). By a simple geometric argument, there are
c,c'>O such that

area(T(e)) < cEL* c c2, for all IT and all e>0. (4.2)

8S
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where L* Is the length of the optimal tour through TI. (The
first term of (4.2) represents asymptotic behavior as e-t0 and

Tie) becomes a ribbon of length Lo and width 2e; the second
-* I term represents asymptotic behavior as e-, and T(e) becomes a
*' circle of radius e.)

Now for arbitrary t>O, let m = [2/ti. Partition C into

disjoint intervals 1 ...5,1,2, each of length m - 2 .
M

*By Lemma 2.6, the points in *(I.) lie within 2/m of each

* other, so

*(I,, r) II is nonempty =* *CIk ) TT 1(2/in), (4.3)

where H1() denotes the set of points (in the plane) that lie
within e of at least one point in TI. If the distance between
any two consecutive points along the heuristic tour exceeds 2/m,
then the 8's corresponding to these points cannot lie in the
same interval, so

H(t) s jw(k I Xk0 2 /m) s_ w(k I *(Ik ) ( I is nonempty). (4.4)

By Lemma 2.5, area(tp(Ik)) - m - 2 . Thus (4.3)-(4.4) yield

H(t) S M 2 area(TI(2/m)). (4.5)

Clearly 1(e) c_ T(e). So (4.2), (4.5), and iefinition
3 I of m become

H(t) s 2cmL" + 4c" 4cL*/t + 2cL* + 4c'. (4.6)

Another bound on H(t) can be established by noting that the

distance between any two points in TI cannot exceed L& or

H(t) 0 , t>min(L*. 42). (4.7)

Furthermore, since there are only N links in the heuristic tour,

H(t) s N. (4.8)

Now combining (4.1) and (4.6)-(4.8) gives

L a m 1n{L', -2) min(N, 4cL*/t + 2cL * 4c') dt

'_ min(N, 4cL"/t} dt 2cL dt 4c' dt.

Evaluating the integrals yields L/L" O(log N). U

9
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5. Stochastic analysis. Let (p ) be an infinite sequence

of independent uniformly distributed points in S, and let

* LN = length of the heuristic tour through (pI ... PN

L; - length of the optimal tour through (p, ... PN ) "

In a classic work, Beardwood, Halton and Hammersley [41 showed

t h a t L; / -F - {5" a.s. (T h e c o n s t a n t 0 * has

been experimentally determined to be 0.765.) The purpose of

this section is to produce similar asymptotic bounds on the

heuristic tour lengths LN. We also examine the length of the

longest link along the heuristic tour, and show that it grows
only slightly faster than the average link length.

To begin, we note that the nicest possible convergence,

LN/4 -' {5 does not hold. We prove instead a result

whose practical implications are the same, that LN/ 4 0N

"converges" to a narrow interval [{5-,{5 ] in the sense that

{5 s_ lim inf LN/4J- and lim sup LN/ -N S{, a.s. (5.1)

Since the optimal tour is no longer than the heuristic tour,

13 < 13- and by T heo re m 3, 3 < 2. 50 03 and

13' exist. This section will establish tight bounds on these

constants. Numerical evaluation of the bounds shows that 03- 0

and 13' lie within a range no greater than 0.956 t 0.001.
Thus, for large N, the heuristic tour length will be about 257

above optimal.

Our analysis may be modified, as in 14], so it applies to

independent points nonuniformly distributed in the plane. If the

points have density f(x,y), and K(f) = j" f *f(xy) dy dx,

then the optimal tour grows as K(f) 1"'lW and the

heuristic tour grows as between K(f) P3- N and

K(f) 4'N Thus the heuristic tour remains about 25%
longer than the optimal tour. If the points are uniformly

distributed over any region of area A>0, then K(f)- * "

10
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This has a useful consequence: it implies that the N/K-th point

in a tour will lie at I/K-th the tour length from the start of

the tour, when N is large. (To see this, observe that N/K con-

secutive 8's span i/K-th the length of C, and constitute inde-

pendent, uniformly distributed points over the image under ip of

that range. Since ' is measure preserving, that image has area

I/K.) An important application is the formation of delivery

routes for K vehicles by partitioning the travelling salesman

tour into K segments, each to be travelled by a single vehicle

[2]. All subtours contain equal numbers of points, but it is

desirable that they be equally long. Partitioning the space-
filling heuristic tour produces routes which tend to be of equal

length. This is not true of the optimal tour, or of tours formed

by other heuristic methods. •

Even the largest distance between two consecutive points along

the heuristic tour cannot greatly exceed the average interpoint

distance, as the following theorem demonstrates. Thus, the
spacefilling heuristic produces a tour whose performance is good

with respect to the "bottleneck" (maximum link length) criterion 0

[61 as well as the customary total tour length criterion.

THEOREM 5.1. Let EN denote the length of the

longest link in the heuristic tour of p ... pN

Then, for all a>1,

4im Prob(E N a 2 a J{ln N)/N - O.

PROOF: Let eN be the largest distance between consecutive 8's

in the sorted list produced by the spacefilling heuristic. In

light of Lemma 2.6, we need only show that

jim P(e. a a2 (in N)/N) - 0.

The distance between O's is not affected by linear shifts

within C. Subtracting the smallest 8 from each e in the list

produces a e at 0 (equivalently at 1) and a sorted list of N-I
independent uniformly distributed 8's between 0 and 1. These

points determine N intervals of which the largest has length

eN.

* S
11
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We now construct a new random variable whose distribution

coincides with that of eN. Let (ti )  be an infinite sequence

of independent exponentially distributed random variables of

N
mean I, and let SN = Z ti. That is, SN is the time of

the N-th arrival of a unit intensity Poisson process. Also let

MN - i 8aSN t 1 . If SN-T, then SI .... SNI will be conditionally

distributed as a sc ted list of N-1 independent uniform random

variables over (O.T]. Thus. MN/T is conditionally distributed

a5 eN, given SN a T. Integrating over T, this becomes-

MN/SN is distributed as eN. It remains to show that

lim P(MN/SN. a (in N)/N) 0.
N-+co

0 Clearly,

P(MN/SN _ a2 (in N)/N)

I . P(MN/ln N "a
2 SNN)

s P(MN/ln N a a or SN/N I/a)

r < P(MN/ln N z a) + P(SN/N s. I/a).

" Since MN is the maximum of N independent exponential random

variables,

|N

P(MN/In N _ a) I- N-a)N < Nl-a,

where we have used the inequality (l-x) N a I - Nx, Ox-cl.

0 This expression vanishes as N-co. And, by the Law of Large

Numbers, PISNIN _S 1/a) vanishes as well. .

REMARK. We have observed that EN/ 4CIn N)/N does not converge

as N grows, but that it most often lies between L.I and 1.3.

12
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We now return to the bounds 1- and + in (5.1). We first

examine the relationship between the random heuristic tour

lengths LN and their expectations E(LN).

LEMMA 5.2. The random sequence [L; - E(L )]/ ( L

converges almost surely to zero. Thus (5.1) holds with

13 - li inf E(LN/ 4[N ) - lir sup E(L / ANJj})
S

PROOF. Steele's proof [12] that [L; - E(L;)]/ JN -- 0 a.s.

applies to the heuristic tour length as well. N

Since 3- and 34' are determined by the deterministic

sequence of expectations E(LN)/ 4 the remaining

analysis will be concerned solely with expectations. We now show

that 0- and 13 are quite close, so that "for all practical

purposes" LN/ &FN converges almost surely.
Define•

m(t) - JI D[$(0), $(8t mod 1)] d8., (5.2)
0

to be the expected Euclidean distance between two uniformly

distributed points in S whose corresponding B's lie exactly

distance t apart. Also let g(t) - 4t e-t and y(t) - 4k  t g(4k t).

Clearly y(4t)-y(t). Furthermore, y displays very little
variation- -

- y(t) - 1.275
(5.3)

-t - max y(t) - 1.281.

These numbers have the following significance.

THEOREM 5.3. There is a constant r" such that

- r _ 1- - 134 - y r*

and r" is arbitrary closely determined by

Ir -J~t~
2 m(t) dtl 6a, V Oca<O.25

13
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To establish Theorem 5.3 we require two lemmas whose proofs are
given in Appendix B. The first shows that m(t) displays a
certain limiting behavior as t-0.

LEMMA 5.4. There is a continuous function r on (0,1J
such that

(a) Im(t) - r(t) 4- '1 2t 2 "

C b) r(t/4) - r(t).

(c) 0 i r(t) s 2.

Let AN be a random variable whose distribution is the same
as that of the difference between two consecutive O's in the
sorted list of N independent values. Clearly,

E{LN)/4N- = -F E(link length) = AR E(mAN)). (5.4)

For large N, the sorted list of O's will approximate a Poisson
process on C, and so the distribution of AN will approach a
negative exponential of mean 1/N. Moreover, since AN is likely
to be small, the limiting form of m(.) (given by Lemma 5.4a)
may be substituted into (5.4). These manipulations are
summarized by

5[ LEMMA 5.5.

lim E(LN)/ - -F r(t) -Ji N e dt 0.

1 PROOF OF THEOREM 5.3. Let r - f r(t)/t dt: by

Lemma 5.4b, this integral does not depend on a. By Lemma 5.5,

E(LN)/*l approaches -.

J o r(t) F N e - N dt
a

- r(t) g(Nt) N dt
0

o4.- .o

= f 4 ka r(t) g(Nt) N dt

.1j 4 a r(t) Y(Nt)/t dt (by Lemma S.4b)

and the asserted result follows from Lemmas 5.2 and 5.4a. "

14
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REMARK. These bounds may be made even tighter by using the

stronger result r(t/2)-r(t) instead of Lemma 5.4b. This places

13 and 13 within 10 - s  of each other. Our estimates,

given at the start of this section, are based on these tighter

bounds, as well as Monte-Carlo simulation of (5.2) to compute

r°. The statistical error of our simulation was + 10 -a
.
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APPENDIX A

AN ALGORITHM TO PERFORM STEP I OF THE SPACEFILLING HEURISTIC

ri L Let:

ABS(A) A if AzO, -A if AcO.
INT(A) - the largest integer not larger than A.
FRACT(A) - A-INT(A).
MIN(A,B) - A if AsB, - B if A>B.
MOD(A,B) - BaFRACT(A/B).
NV(X,YJ - the 'number' of vertex (XY) of the unit square,

counting clockwise from the origin, i.e., NV(0,0)=O,
NV(0,1)I, NV(I,1)-2, NV(I,0)-3.

The algorithm is given as a recursive function:

FUNCTION THETA(X,Y):

If X-1 and Y-1 then RETURN(O.5)

Q-NV(MIN(INT(2*X),I), MIN(INT(2-Y),I))) (Q identifies the quad-
rant containing (X.Y))

T-THETA(2*ABS(X-0.5), 2*ABS(Y-0.5)) (T is the position along the
subcurve in quadrant Q)

If MOD(Q,2)-I then T-I-T (Visit the vertices of
a quadrant clockwise)

RETURN(FRACT((QT)/4 *7/8))
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APPENDIX B

PROOFS OF LEMMAS REQUIRED IN THEOREM 5.3.

PROOF OF LEMMA 5.4. Let

M-t) * ($() $(.t)] dO

and

m*(t) -m(t) .2 t 3 / 2 -m +) 2 d d6.
f1-t

Clearly m-(t)sm(t), and by Lemma 2.6, m(t)srn(t). Since

*j visits S by visiting four subsquares of S, each identical to S

at half the scale (see Figure 1),

m-(t) i 2 m-(t"4)

Mn(t) 2 m*(t14).

So 2k m-(t/4k) and 21' m4(t/4k) approach a common limit m*(t) satisfying

m*(t) -2 m*(t/4)(.1

and

Im(t)-m*(t)I 2 t 1 . (B.2)

By Lemma 2.6,

m(t) s~ 2 C41 (B.3)

and by the triangle inequality

m(t-e) s m(t) m i(e) s m(t) *2 4e.

so mn(-) is continuous. Now let r(t) *m(t)/ .Jt Continuity

of r follows from that of m; (a) follows from (B.2); (b) follows-
from (8.1) and (c) follows from (B.3). a

18



PROOF OF LEMMA 5.5. The exact density of AN is

Wt) - N (l-t)N - 1,  0 t 1,

so (5.4) may be written

E(Lt)/ -F -X m(t) fN(t) dt.

Now

JE(LNd/ 'FJ- F r(t) -Ft fN(t) dtj

< -" I" t)- Er(t)-4t]l fM(t)dt

1 f 2 (Nt)3 / 2 (l-t)N - dt (by Lemma 5.3a)

<_ JI0 2 (Nt) 3/ 2 •- 0N-I)t dt

f J- 0 2 (Nt 3 e - (N -1t dt

0(1/N).

* It remains to show that the following sequence vanishes as N-c,

[t Jr (t) -ft-fN(t) dt] -[iJr(t) 4N e-Ntdt]

I 2 N3/ 2 r (1-t)(N-1) - e-Ntj dt (by Lemma 5.4c) S

- 2 47 (Imax(O,1-T/N) -N - e-') dT. (T-Nt)

Since (I-T/N)N converges upward to e - 7, the integrand

-* of this upper bound converges pointwlse to zero as N-.o, and by

Lebesgue's dominated convergence theorem, the limit integral
vanishes as well. "
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